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Introduction
Alzheimer’s disease (AD) is the most common reason 
for dementia that is predicted to influence 13.8 million 
Americans by the middle of the century  [1]. The 
economic costs of AD are estimated to exceed 
$277 billion by the end of 2018 [1].

In Egypt, dementia is not identified as a health 
challenge due to the large proportion of young 
people [2]. The statistical data on rates and costs of AD 
in Egypt are deficient [3]. However, in one study, the 
prevalence of dementia in Wadi Ara was reported as 
20.46% for those over the age of 65 years [4].

Pathologically, the main stamps of AD are the extracellular 
deposition of amyloid‑β protein  (Aβ)‑forming 
neuritic plaques and the intracellular accumulation of 
abnormal hyperphosphorylated tau proteins forming 
neurofibrillary tangles [5].

Patients with AD have an increased risk of 
developing seizures and epilepsy  [6]. Furthermore, 

electroencephalographic interictal epileptiform 
discharges have been observed in the transgenic mouse 
model of AD with overexpressed mutated forms of 
amyloid‑β precursor protein (AβPP) [7,8].

Aluminum is a well‑identified neurotoxin  [9]. It 
crosses the blood–brain barrier via the high‑affinity 
transferrin receptors  [10]. The distinct brain regions 
show variable sensitivities to aluminum caused by the 
differences in the blood–brain barrier mechanisms [11]. 
Aluminum preferentially accumulates in the 
hippocampus and the frontal cortex where it 
damages the synaptic architecture  [9]. It increases 
the expression of AβPP  [12,13] and accelerates tau 
protein aggregation  [14]. It is a potent cholinotoxin 
that causes neuronal apoptosis and degeneration of 
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cholinergic projections [15]. These changes ultimately 
cause learning and memory deficits and therefore can 
be used as an animal model for AD [16,17].

Lamotrigine (LTG) is a second‑generation antiepileptic 
agent that acts as a blocker of several calcium, potassium, 
and sodium currents  [18]. Memantine  (MEM) is 
a neuroprotective drug that acts by uncompetitive 
blocking of the N‑methyl‑d‑aspartate  (NMDA) 
receptor, which in turn prevents excitotoxicity caused 
by excessive influx of calcium [19].

Treatment of epilepsy in the elderly patients with AD 
is difficult and needs special attention due to numerous 
pharmacokinetic factors and the possibility of drug 
interactions  [6]. In the present study, the effect of 
LTG on the anti‑alzheimer activity of MEM has been 
assessed regarding the behavioral and biochemical 
effects as well as histopathological changes.

Materials and  methods

Animal groups
We utilized 32 male Wistar rats weighing 200–250 g 
and were divided into four groups as follows:
(1) Group  I: control group which received 

intraperitoneal saline in equal volumes and 
regimens to AlCl3

(2) Group  II: AlCl3‑treated group which received 
AlCl3  (75  mg/kg/day, intraperitoneally) for 
60 days [20]

(3) Group  III: AlCl3  +  MEM‑treated group which 
received AlCl3  (75  mg/kg/day, intraperitoneally) 
and MEM  (10  mg/kg/day, intraperitoneally) for 
60 days [20]

(4) Group IV: AlCl3 + MEM + LTG‑treated group which 
received AlCl3 (75 mg/kg/day, intraperitoneally) and 
MEM (10 mg/kg/day, intraperitoneally) for 60 days 
and LTG (10 mg/kg/day, intraperitoneally) 90 min 
before the behavioral tests [21].

Behavioral tests

Novel object recognition test
The test was accomplished in a square stainless steel 
box (60 × 60 × 40 cm) with black walls and floor [22]. 
Each rat was placed in the test box containing two 
identical objects and was left to spend a total of 
15 s exploring these two objects  (familiarization 
phase)  [22]. After the familiarization phases, three 
testing sessions  (test phase) were accomplished after 
a retention interval of 5  min, 2  h and 24  h to asses 
short‑term, intermediate‑term, and long‑term memory, 
respectively. Rats were placed in the box containing 

one of the objects previously explored during the 
familiarization phase and a novel one and were allowed 
to explore for 3 min [22]. A discrimination index was 
estimated as  (time spent with novel object  −  time 
spent with familiar object)/(total time exploring both 
objects) was used to measure memory preference [22].

Passive avoidance test
The test was performed on an apparatus that was 
divided by a wall into two chambers (20 × 25 × 30 cm). 
The wall contains a connecting hole of 8 cm diameter. 
One chamber was maintained illuminated by a 4‑watt 
fluorescent lamp  [20]. The test was performed on 2 
successive days. The acquisition trials were accomplished 
on the 1st  day. The rats were placed individually in 
the brightened chamber and once entered the dark 
chamber, an electric shock (40 V, 0.5 A for 1 s) was 
delivered to their feet through the floor grid. The 
rats were immediately removed and returned to the 
cage [20]. During the retention trial performed 24 h 
later, the rats were placed again in the brightened 
chamber and the time between placement in the 
brightened chamber and the entrance to the dark one 
was recorded (step‑through latency) [20].

Morris water maze
The test was performed in a circular tank made of 
stainless steel and filled with water at room temperature. 
The tank measures 160 cm in diameter and 35 cm in 
height. It is divided by four fixed points on its perimeter 
to four quadrants. It contains an escape platform of 
10 × 10 × 10 cm of the same color [23]. Each rat had 
four trials per day separated by 10 min for 5 successive 
days (acquisition trials) during which three parameters 
were evaluated; the time latency to reach the platform, 
the distance traveled, and the swimming speed  [23]. 
On the sixth day, the escape platform was removed and 
the rats were allowed to swim freely for 90 s  (probe 
trials). In probe trials the latency to reach the target 
quadrant and the time spent in it were calculated [23].

Radial arm maze
This test was performed in an eight‑arm maze made of 
wood. Each arm is 15 × 15 × 80 cm radiating from a 
circular platform which is 30 cm in diameter and of the 
same level as the arms [20]. Each rat had given two daily 
trials, 6 days/week for a total of 2.5 weeks. In each trial, 
time was recorded and the rat was free to explore [20]. 
The following parameters were estimated: working 
memory errors  (the number of repeated entries to the 
baited arms) and reference memory errors (the number 
of entries to the unbaited arms). The score was expressed 
as the mean number of reference and working memory 
errors for each group, with data averaged over five blocks, 
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each of six trials. The mean time required to complete 
the task in all trials was also calculated [20].

Estimation of AChE concentration
The kidney and the brain were obtained from each 
animal after being killed at the end of the behavioral 
tests. The concentration of acetyl cholinesterase (AChE) 
is assayed using micro‑ELISA strip plate provided 
within a rat AChE ELISA kit  (Bioneovan Co. Ltd, 
Daxing Industry Zone, Beijing, China) according to 
the manufacturer’s protocol [24,25].

Statistical analysis
Statistical analysis was done with the one‑way analysis 
of variance and the two‑way analysis of variance 
(for the time‑course data) followed by Bonferroni 
post‑hoc test using GraphPad Prism Software 
Inc.  (San Diego, California, USA). The results were 
represented as mean  ±  SEM. A  P  value of less than 
0.05 was considered significant.

Results

Effect of AlCl3, MEM, LTG, and their combination on the 
rat exploration time in the novel object recognition test 
in rats
There was no significant difference between the groups 
in the total exploration time during the familiarization 
phase between groups (Fig. 1; P > 0.05).

Effect of AlCl3, MEM, LTG, and their combination 
on the discrimination index of the novel object 
recognition test in rats
The AlCl3‑treated rats showed a significant decline 
in the discrimination index after 5  min, 2  h, and 

24  h  (0.03521  ±  0.0387, −0.01697  ±  0.04520, 
and  −0.01816  ±  0.03329, respectively), compared 
with the saline‑treated group at the same allocated 
time  (0.056  ±  0.02734, 0.2005  ±  0.02956, and 
0.1231  ±  0.01471, respectively)  (Fig.  2; P  <  0.01, 
<0.001, <0.001, respectively). Combined treatment 
with MEM significantly increased the discrimination 
index after 5 min, 2 h, and 24 h  (0.1613 ± 0.01665, 
0.1096  ±  0.02117, and 0.07373  ±  0.01420, 
respectively) compared with the AlCl3‑treated 
rats (Fig. 2; P < 0.01, <0.05, <0.05, respectively). The 
AlCl3 + MEM + LTG‑treated rats showed a significant 
increase in the discrimination index after 5 min, 2 h, 
and 24 h  (0.2238 ± 0.01304, 0.1374 ± 0.01647, and 
0.1124  ±  0.01645, respectively) compared with the 
AlCl3‑treated rats (Fig.  2; P  <  0.001, <0.01, <0.01, 
respectively). There was no significant difference 
between the AlCl3  +  MEM  +  LTG and the 
AlCl3  +  MEM‑treated rats in the discrimination 
index after 5 min, 2 h, and 24 h (Fig. 2; P > 0.05).

Effect of AlCl3, MEM, LTG, and their combination on 
the passive avoidance test in rats
AlCl3‑treated rats had significantly decreased the 
step‑through latency compared with the saline‑treated 
rats (Fig. 3; P < 0.001). The AlCl3 + MEM‑treated 
rats as well as the AlCl3  +  MEM  +  LTG‑treated 
rats showed a significant increase in step‑through 
latency compared with the AlCl3‑treated rats 
(Fig.  3; P  <  0.05, <0.001, respectively). There 
was no significant difference in the step‑through 
latencies between the AlCl3  +  MEM‑treated 
rats and the AlCl3  +  MEM  +  LTG‑treated rats 
(Fig. 3; P > 0.05).

Effects of AlCl3 and its combined treatment with MEM and MEM+LTG 
on the total exploration time spent in investigating identical objects 
in the learning trial of novel object recognition task. Values are 
represented as means±SEM of eight observations. LTG, lamotrigine; 
MEM, memantine.

Figure 1

Effects of AlCl3 and its combined treatment with MEM and MEM+LTG 
on discrimination index (%) after 5 min, 2 h, and after 24 h. 
Discrimination index is calculated as the difference in exploration time 
between the novel and familiar objects divided by the total time spent 
exploring both objects. Values are represented as means±SEM of 
eight observations, **P<0.01 versus saline grouP values, ***P<0.001 
versus saline grouP values, #P<0.05 versus AlCl3 grouP values, 
##P<0.01 versus AlCl3 grouP values, and ###P<0.001 versus AlCl3 
grouP values. LTG, lamotrigine; MEM, memantine.

Figure 2
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Effect of AlCl3, MEM, LTG, and their combination on 
the Morris water maze test in rats

Acquisition trials
Throughout the 5 successive days of acquisition trials, 
there was a significant increase in the escape latency 
[Fig. 4a] [F  (1, 56)=245.15, P  <  0.0001] and the 
mean traveled distance [Fig. 4b] [F (1, 60)=199.39, 
P < 0.0001] in the AlCl3‑treated rats compared with 
the saline‑treated group. The AlCl3 + MEM‑treated 
rats showed enhanced performance in the 
form of significant reduction in escape latency 
[Fig. 4a] [F  (1, 56)=65.05, P  <  0.0001] and the 
mean distance traveled [Fig. 4b] [F  (1, 60)=62.93, 
P < 0.0001] compared with the AlCl3‑treated rats. 
The AlCl3  +  MEM  +  LTG‑treated rats showed 
a significant further reduction in escape latency 
[Fig. 4a] [F  (1, 56)=134.07, P  <  0.0001] and the 
mean traveled distance [Fig. 4b] [F  (1, 60)=48.27, 
P < 0.0001] compared with the AlCl3‑treated rats. 
There was no significant difference in the escape 
latency [Fig. 4a] [F (1, 60)=13.49, P > 0.05] and the 
mean distance traveled [Fig. 4b]  [F  (1, 60)=1.97, 
P > 0.05] between the AlCl3  + MEM‑treated rats 
and the AlCl3 + MEM + LTG‑treated rats.

Probe trials
The AlCl3‑treated rats exhibited a significant 
increase in the time required to reach the hidden 
platform (Fig.  4c; P  <  0.001) and reduced time 
spent in the target quadrant compared with the 
saline‑treated group (Fig.  4d; P  <  0.001). The 
AlCl3  +  MEM‑treated rats showed a significant 
reduction in the time required to reach the hidden 
platform  (Fig.  4c; P  <  0.01) and increased time 
spent in the target quadrant (Fig.  4d; P  <  0.05) 
compared with the AlCl3‑treated group. In addition, 
the AlCl3  +  MEM  +  LTG‑treated rats showed a 
significant reduction in the time required to reach the 
hidden platform  (Fig.  4c; P  <  0.001) and increased 
time spent in the target quadrant compared with the 
AlCl3‑treated group  (Fig.  4d; P  <  0.001). Results 
have shown that the AlCl3 + MEM + LTG‑treated 
rats showed a significant increase in the time spent 
in the target quadrant (Fig. 4d; P < 0.05) compared 
with the AlCl3  +  MEM‑treated rats. There was no 
significant difference in the time required to reach 
the hidden platform between the AlCl3  +  MEM 
and the AlCl3  +  MEM  +  LTG‑treated rats 
(Fig. 4c; P > 0.05).

Effect of AlCl3, MEM, LTG, and their combination on 
the performance of rats in the radial arm maze
There is a significant increase in the number of reference 
errors [Fig. 5a] [F (1, 60)=1126.08, P < 0.0001] as well 

as working errors [Fig. 5b] [F (1, 54)=323.05, P < 
0.0001] in blocks 2 (t = 6.654, P < 0.001), 3 (t = 10.72, 
P < 0.001), 4 (t = 12.01, P < 0.001) and 5 (t = 14.94, 
P < 0.001) in the AlCl3‑treated group compared with 
the saline‑treated group. The AlCl3  +  MEM‑treated 
group showed a significantly lower number of reference 
errors  [Fig. 5a] [F  (1, 60)=264.37, P  <  0.0001] and 
working errors [Fig. 5b] [F (1, 60)=50.50, P < 0.0001] 
in blocks 3 (t = 3.585, P < 0.01), 4 (t = 3.076, P < 0.05), 
and 5  (t  =  6.152, P  <  0.001) compared with the 
AlCl3‑treated group. Combined treatment with LTG 
and MEM significantly reduced the number of reference 
errors [Fig. 5a]  [F  (1, 60)=668.76, P  <  0.0001] and 
working errors [Fig. 5b] [F (1, 60)=157.67, P < 0.0001] 
compared with the AlCl3‑treated group. Results have 
shown that the AlCl3 + MEM + LTG‑treated group 
showed a significantly lower number of reference 
errors [Fig. 5a] [F (1, 60)=90.49, P < 0.0001] in blocks 
2  (t  =  4.158, P  <  0.001), 3  (t  =  4.653, P  <  0.001), 
4 (t = 4.988, P < 0.001), and 5 (t = 4.814, P < 0.001) and 
working errors [Fig. 5b] [F (1, 60)=40.23, P < 0.0001] 
in blocks 2  (t  =  3.958, P  <  0.01) and 5  (t  =  4.328, 
P < 0.001) compared with the AlCl3 + MEM‑treated 
group. The AlCl3‑treated group showed a 
significant increase in latency  (time to consume 
all four rewards) compared with the saline‑treated 
group  (Fig. 5c; P < 0.001). In the AlCl3 + MEM as 
well as the AlCl3 + MEM + LTG‑treated group, the 
latency decreased significantly compared with the 
AlCl3‑treated group  (Fig.  5c; P  <  0.01, P  <  0.001, 
respectively). The AlCl3  +  MEM  +  LTG‑treated 
group showed a significant decrease in latency 
compared with the AlCl3  +  MEM‑treated group 
(Fig. 5c; P < 0.001).

Effects of AlCl3 and its combined treatment with MEM and MEM+LTG 
on the passive avoidance test. On day 1, the rats received a footshock, 
and 24 h later, the step-through latency, the time between placement 
in illuminated chamber and entry to the dark room as a test for the 
retention memory was recorded in seconds (s) with a 300 s cutoff 
time. Values are represented as means±SEM of seven observations. 
***P<0.001 versus the saline-treated grouP values, #P<0.05 versus 
AlCl3-treated grouP values, and ###P<0. 001 versus the AlCl3-treated 
grouP values. LTG, lamotrigine; MEM, memantine.

Figure 3
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Effect of AlCl3, MEM, LTG, and their combination on 
AChE levels in the serum, kidney, hippocampus, and 
cerebral cortex in rats
The AlCl3‑treated rats showed a significant increase 
in the AChE activity in the serum, kidneys, 

hippocampus, and the cerebral cortex compared 
with the saline‑treated animals  (Fig.  6; P  <  0.001). 
The AChE activity significantly decreased in the 
serum, kidneys, hippocampus, and the cerebral 
cortex of the AlCl3  +  MEM as well as the 
AlCl3 + MEM + LTG‑treated groups compared with 
the AlCl3‑treated group  (Fig.  6; P  <  0.001). AChE 
activity significantly decreased in the serum and 
hippocampus of the AlCl3  +  MEM  +  LTG‑treated 
group compared with the AlCl3  +  MEM‑treated 
group (Fig. 6; P < 0.05 and < 0.01, respectively).

Effect of AlCl3, MEM, LTG, and their combination on 
the histopathology of the cerebral cortex
Sections of the cerebral cortex from the AlCl3‑treated 
rats showed degenerated cerebral cortex neurons, that 
is, pyramidal cells (P) with vacuolation and increased 
number of glial cells  (G) accompanied by cellular 
infiltration. The cerebral cortex of the AlCl3 + MEM 
and the AlCl3  +  MEM  +  LTG‑treated rats showed 
a marked reduction in the number of the damaged 
neurons together with the appearance of a large number 
of intact neuronal cells with less glial cells (Fig. 7).

Effect of AlCl3, MEM, LTG, and their combination on 
the histopathology of the hippocampus
The hippocampus of the AlCl3 and the 
AlCl3 + MEM + LTG‑treated rats showed dark neurons 
with dark nuclei associated with vacuolation (Fig. 8). 

Effects of AlCl3 and its combined treatment with MEM and MEM+LTG on the acquisition trials; time (s) to reach platform (panel a) and 
swimming distance (meters) (panel b). Probe trials; time (s) to reach hidden platform quadrant (panel c) and the time (s) spent in hidden 
platform quadrant (panel d). Values are represented as means±SEM of eight observations. ***P<0.001 versus saline grouP values, #P<0.05 
versus AlCl3 grouP values, ##P<0.01 versus AlCl3 grouP values, ###P<0.001 versus AlCl3 grouP values, and+P<0.05 versus AlCl3+MEM. LTG, 
lamotrigine; MEM, memantine.

Figure 4

dc

ba

Figure 5

b

Effects of AlCl3 and its combined treatment with MEM and 
MEM+LTG on the reference memory (panel a), the working 
memory (panel b), and the time (s) required to end the task in 
the radial arm maze test (panel c). Values are represented as 
means±SEM of eight observations. ***P<0.001 versus saline 
grouP values, #P<0.05 versus AlCl3-treated grouP values, ##P<0.01 
versus AlCl3-treated grouP values, ###P<0.001 versus AlCl3-treated 
grouP values, ++P<0.01 versus AlCl3+MEM-treated grouP values, and 
+++P<0.001 versus AlCl3+MEM-treated grouP values. LTG, lamotrigine; 
MEM, memantine.

c

a
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Combined treatment with MEM resulted in marked 
reduction in the number of damaged neurons together 
with the appearance of a large number of intact 
neuronal cells (Fig. 8).

Effect of AlCl3, MEM, LTG, and their combination on 
the histopathology of the cerebellum
The cerebellum of the AlCl3‑treated rats showed 
irregular outlined nuclei with degeneration of 
Purkinje cells  (Fig.  9). On the other hand, the 
cerebellum of the AlCl3  +  MEM‑treated rats and 
the AlCl3  +  MEM  +  LTG‑treated rats showed no 
vacuolation with a regular arrangement of Purkinje 
cells with prominent nuclei (Fig. 9).

Discussion
Aluminum impaired the performance of rats in the 
novel object recognition task, Morris water maze, radial 
arm maze, and passive avoidance tests. It caused a 
significant increase in AChE levels in the hippocampus, 
cerebral cortex, serum, and kidney of the treated rats.

The AlCl3  +  MEM‑treated group showed improved 
performance in the behavioral tests, compared with the 
AlCl3‑treated rats. Concurrent administration of LTG 
significantly potentiated MEM‑induced behavioral 
enhancement.

Regarding AChE concentrations, the 
AlCl3  +  MEM‑treated rats and the 

Effects of AlCl3 and its combined treatment with MEM and MEM+LTG on AChE levels in serum (panel a), kidney (panel b), hippocampus (panel c), 
and cerebral cortex (panel d) in rats. Values are represented as means±SEM of eight observations. ***P<0.001 versus saline-treated grouP values, 
###P<0.001 versus AlCl3-treated grouP values, +P<0.05 versus AlCl3+MEM-treated grouP values, and ++P<0. 01 versus AlCl3+MEM-treated 
grouP values. LTG, lamotrigine; MEM, memantine.

Figure 6

dc

ba

Photomicrograph sections of the cerebral cortex of rats from 
various groups, that is saline-treated group, AlCl3-treated group, 
AlCl3+MEM-treated group, and AlCl3+MEM+LTG-treated group. Brain 
sections from aluminum chloride-treated rats stained with hematoxylin 
and eosin stain (×40) showing degenerated pyramidal cells (p) with 
vacuolation and increased number of glial cells (g). Scale bar 100 µm. 
LTG, lamotrigine; MEM, memantine.

Figure 7
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AlCl3 + MEM + LTG‑treated rats showed a significant 
decrease in AChE levels in the serum, cerebral cortex, 
hippocampus, and the kidneys compared with the 
AlCl3‑treated rats.

Sections from different brain regions of 
the AlCl3  +  MEM‑treated rats and the 
AlCl3 + MEM + LTG‑treated rats showed decreased 
number of damaged neurons and glial cells with 
increased number of intact well‑defined neuronal cells 
compared with the AlCl3‑treated rats.

The choice of chronic rather than acute administration 
of a dose of 10 mg of MEM given by the intraperitoneal 
route was based on several previous studies. For 
example, Danysz et  al. [26] found that acute 
administration of big doses of MEM (20–30 mg/kg) 
may build up very high plasma Cmax levels. Moreover, 
other authors found that acute administration of large 
doses of MEM can produce undesirable effects like 
ataxia, abnormal stereotypical behavior, and learning 
dysfunction [27–29].

There are many theories which explain the 
neuroprotective effects of MEM in aluminum‑induced 
neurotoxicity. Rosi et  al. [30] found that MEM to a 
degree stabilized information processing in the 
hippocampus, and when administered during the 
early phases of the pathology, it provided neuronal 
and cognitive protection and indirectly prevented 
pathological microglial activation. Furthermore, 
MEM protected proteins of the cerebral cortex and 
the hippocampus against oxidative stress‑induced 
damage  [31]. It was capable of preserving memory 

during neuronal inflammation  [30,32]. In other 
studies, MEM enhanced attention and memory of 
rats injected with Aβ peptides [33], and was found to 
protect the neurons of the basal forebrain involved in 
acetylcholine release [34].

The blockage of NMDA receptor‑mediated 
excitotoxicity contributes to preserving the normal 
neuronal structure and function  [35,36]. An 
anti‑excitotoxic drug must block excessive NMDA 
receptor activation that causes neuronal excitotoxicity 
while leaving the normal NMDA function relatively 
intact to avoid adverse effects  [37]. MEM which 
is relatively low‑affinity open‑channel blockers 
goes into the channel only when it is opened by the 
agonist  [37,38]. The relatively fast off‑rate prevents 
MEM from sequestrating inside the ion channels 
and consequently interfering with normal synaptic 
transmission [37,38].

The results of the current study suggest a favorable 
cognitive profile of LTG when concurrently 
administered with MEM; a finding that was matched 
with other studies. Acute LTG administration 
prevented behavioral disruption [39] and reduced 
the number of injured cortical neurons in rats treated 
with NMDA antagonists, MK‑801  [40]. It was able 
to prevent disruption of reversal learning in rodents 
caused by D‑amphetamine [41].

The mechanism by which LTG may exert its 
neuroprotective effects may be related to blockade 
of voltage‑sensitive sodium channels  [42–44]. LTG 
binds to and stabilizes the inactivated state of the 

Photomicrograph sections of the hippocampus of rats stained with 
hematoxylin and eosin stain (×40) from various groups, that is the 
saline-treated group, AlCl3-treated group, AlCl3+MEM-treated group, 
and AlCl3+MEM+LTG-treated group. The arrow heads point to the 
vacuolation within the hippocampal neurons. Scale bar 100 µm. LTG, 
lamotrigine; MEM, memantine.

Figure 8

Photomicrograph sections of the cerebellum of rats stained with 
hematoxylin and eosin stain (×40) from various groups, that is the 
saline-treated group, AlCl3-treated group, AlCl3+MEM-treated group, 
and AlCl3+MEM+LTG-treated group. Arrow heads point to the regularly 
arranged Purkinje cells. Scale bar 100 µm. LTG, lamotrigine; MEM, 
memantine.

Figure 9
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different subtypes of voltage‑gated sodium channels. 
The action of LTG on the sodium channels may 
inhibit the excessive presynaptic release of glutamate, 
which may synergize the NMDA receptor‑blocking 
activity of MEM  [39]. Moreover, LTG may inhibit 
arachidonic acid metabolic cascade mediated by 
the NMDA receptors in the rat brain  [45]. It has 
also an indirect inhibitory effect on the N‑type and 
R‑type voltage‑activated calcium channels, but not 
the T‑type calcium channels in the recombinant cell 
lines [46–48]. The effect of LTG on the recombinant 
hyperpolarization‑activated cyclic nucleotide‑gated 
ion channels in the hippocampus [49] can participate 
in the neuroprotective effects mediated by LTG [50].

Limitations of the study
A clear‑cut analysis of our results is limited by the 
use of one‑dose regimen for each drug. Our future 
studies will take into consideration the estimation of 
acetylcholine and glutamate levels in the brain as they 
are involved in learning and memory.

Conclusion
Combining MEM and LTG have a positive 
neuroprotective outcome, a result that may hold 
promise in the treatment of dementia with epilepsy.
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